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Abstract

The Kolmogorov width of the classes of functions with mixed smoothness in the anisotropic
space and that of the anisotropic class in the space of functions with mixed smoothness are
considered. The asymptotic order of the widths and weakly asymptotic optimal approximation
subspaces which realize the order of widths are also given.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Let 7y = [0, 27]" be a d-dimensional torus, and let L, =L,(nq), 1<p< oo, be the

usual space of L,-integrable functions on my;. For ece; = {1,2,....,d}, r=
(r1, ooy ra) >0 (e, 1,0, =1, ..., d),let D"f(x) = (ITjee %)f(x) be the generalized
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derivative of f in the sense of Weyl (see [2,4]). In the following, we always suppose
that r=(ry,...,rq)eRYR= (Ry,...,R;)eR?, r, R>0. Then the anisotropic

Sobolev space W;l and the Sobolev space Wy, , of functions with mixed derivative

are defined as follows (see [4]):

R ._ )
W, =< feLl,: <o g, (L.1)
J=11OX 0,
Wiy {feL Wy, = S 1077, } (12)
ecey
When R =R, = -+ = Ry, W;‘ is the usual Sobolev space.

For R, r>0, we denote k; = [R;]] + 1, [; = [r;]] + 1,1 <i<d. Then the anisotropic
Holder—Nikolskii space H ,f‘ and the Holder—Nikolskii space H” of functions with

mix, p
mixed difference are defined in the following way (see [4]):

d
—R; kj
HR = {feL,,:|f||HpR =1+ sup 1" -|A,,f,,..f||,,<oo}, (13)
Jj= J

oy ™ > Jup II A" - 114 fl,,<oo}7 (1.4)

ecey jee

Hyix p : {feL /]

where h = (hy, ..., hg)>0, and

I’
:<H AZJ}/.)f(x), Ay () Z I (A TICORE )

Jee =0

Let X be a Banach space with the norm ||-||,, and F be a (convex, compact,
centrally symmetric) subset of X. Then the Kolmogorov M-width of F in X is
defined by

dy(F,X) =inf sup inf |1 —glly, (1.5)
Lu fer 9€lu

where L, runs over all subspaces of X of dimension M or less. More information on
Kolmogorov widths can be found in [3].

Let Fj; , denote one of the spaces with mixed smoothness W, . H;. . let FR

denote one of the anisotropic spaces WX, HY, and let BF}, . BF} be the unit balls

mix,p’
of the spaces Fy ;. . Fp , respectively. In this paper, we consider the Kolmogorov M-
width of the classes BFy,,  in the space Fy (if r — R>0) and that of the classes BFy

in the space Fy; , (if Zi: \ i/ Ri<1). We find the asymptotic order of the widths and

give weakly asymptotic optimal approximation subspaces which realize the order of
widths. Our main results are the following:
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Theorem 1. Let 1<p<oo,r—R>0,d:=min;¢;cqg,0; =1 — R, i=1,....d. Then
dM(BFlfmxvaR)XMii' (16)
-1
Theorem 2. Let 1<p< oo, v:= Zle ri/Ri<1, g(R) = (Z]‘Ll RJTI) . Then

dy(BER, Fly, )= M~ (=000, (1.7)
Remark. In [1] Bugrov obtained that HR can be continuously imbedded into the

space H if Zl  7i/Ri<1. Here Theorem 2 shows that FR can be compactly

le V4
imbedded into the space Fi;,  if %, ri/Ri<1. Also Theorem 1 shows that F, mix, p
can be compactly imbedded into the space F]}‘ if r—R>0.
2. Some lemmas
Lemma 1. Let 1<p< oo, r,R>0. Then for all f € W;‘, g€ Wiix,p» we have

1 s < s Vgl <l - @.1)

Let V,,(¢) be the Vallee—Poussin kernel on [0, 2x]; that is

2m—1
_1+22coskt+2 Z(

)Cos kt; Voa(t) =1, Vya(t) =0.

k=m+1
For feL,, s = (s1, .., Sq)€Z%, s=0, we define
d
= H(Vz“/*l (x,i) — V2 (x_/)), A f(x) = As + f(x). (2.2)
=1
Lemma 2. Let 1<p< o, r=(r1,...,r4)>0. Then for any f € Hy ,, we have
= sup z(r’S)HASpr‘ (23)
§=0
where (r,8) = ris) + -+ + rasq.
For R = (Ry,...,R;)>0, 5= (s1,...,54) €29, 5=0, neZ,, we denote

-1
= (Z le> , Ok ={s20]5<[ng(R)/R}], 1<j<d}, (2.4)

=1
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VAR m() = 3 Af(), (2.5)

s€Op
A(f,R,0)=V(f,R,0); A(f,R,n)=V(f,R,n)—V(f,R,n—1). (2.6)

Lemma 3. Let 1<p< o0, R=(Ry,...,R;)>0. Then for anyferR, we have

/1120 = sup 2" N A(f, R, m)], (2.7)

n=0
For the proof of Lemmas 1-3, see [4].
First we suppose that v == Z;‘;l ri/R;<1. For JeZ,, we denote

o= o), p(s) = {k=(ki,....ka)eZ|[2V"|<|kj| <2%, j =1, ...,d}
se 0y

5 ()= Y ™, k) = (2m)! / S(x)e® dy,

T(PR), = S SeLlf(x) = D fik)e™ =" 6,/(x) . (2.8)

kew) se0p
It is easy to show that V(f,R,J) is a bounded linear operator from L, into
T(‘P{QP (1<p< o) and dim T(‘P{z)pxy‘ Moreover, we have
Lemma 4. Let I<p< oo, v = Ef’l:l ri/R;<1. Then for anyfeBH’}‘, we have

1f = V(R [ <270 R), (2.9)

P

Proof. By the Bernstein inequality and Lemma 3, we have

> A(f,Rn)

n>J

Hfl_ V(fwaJ)HWV =

mix,p

wr

mix,p

d
< ARy, < 30 2200 IR g1 R ),

n>J n>J

« Z pvng(R)y—ng(R) I¥d |HPR « 2~ (1-v)Jg(R) (2.10)

n>J

Lemma 4 is proved. [
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ForJeZ,, 5= ([Jg(R)/Ry], ...,[Jg(R)/Ry]). Denote

TG), = feLlf(x) = 3 Ak = 5:/(x)

kep(3s)

Lemma 5. Let I1<p< o0, v= 251:1 ri/Ri, f€T(5),. Then

11l >2 " 1111, (2.11)

mixp

Proof. Denote Qs = {s = (s1,...,54)| si = [Jg(R)/R;] or [JgR)/R]+1, i=
.,d}. Tt is easy to verify that A/ =0 if s& Q5 and the number of the element
of Q5 is 2¢. By Lemma 2 we get that

1/ g = sup 20914, f1],= 2" max ||4, 1],
mix,p §=0 S€ QE
=250 S|4 f ], 250 3 A,f]], = 29 1,
se0s s€ 05

Now we consider the case o .= r — R>0. For JeZ, & = min| ¢;<4%;, & = 1; — R;,
O0<u<1, we define

v = U p(s), 0O) = {seZd| (o, 8) +,u<(R s) — max (Risi)> <oZJ}

I<i<d
se

(2.12)
TV, =S feL|lf(x) =Y fie™ =" 6f(x)p, O (2.13)
ke seQ)

T(‘Pﬁ)p is called hyperbolic cross trigonometric subspace. We want to compute its
dimension. First we introduce a lemma.

Lemma 6. (see Temlykov [4]) Let k>0, o = (a1, ...,%4), B = (B, .-, B4) >0, y; =
ai/ﬁia i= 17 "';dv and yY="=-= “/V<Vv+1 X <Vd7 1<V<d Then
Z 27K(o¢,s)x27}<7] .Jvfl and Z 21(( ,‘Y)xzky./ 'Jvfl. (214)
(Bs)>J (or,9)<J

From Lemma 6 we know that

d
dimT(¥h), = [P) = |p(s)[= D 20I=<3" >~ 209=2/ (215)

seQ) seQ) J=1 (s,0d)<at

where w = (1,...,1), o/ = (oc’i, ...7ai,), ocj = o; océ =o; + uR;, i#j.
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For feL,, we set

VIS, x) = Af(x (2.16)
seQ)

Then V7 is a bounded linear operator from L, into T(¥}), (1<p< o). Moreover,
we have

Lemma 7. Let 1<p< o0, O<u<l, r—R>0, & =min|¢;<q;, o =+ — R;. Then
for any f e BH we have

mix,p’

1S = Vil <2 ™. (2.17)

Proof. By the Bernstein inequality and Lemma 2, we have

1= Viflle = || 3 A

SEQ) W

< Z HASfHWpR « Z omaxi<i<a(Risi) ||Asf||p

séQ; SéQ};
« Z 2 (r,8)4+max; <i<q(Ris;) ||f||H’ <K (218)
YEQ“ mix,p

where K := 35 . o 27 (9 tmaxicicalfs), Let us estimate K. Since 0<p<1, 20 > 1,

by Lemma 6 we know that

K — Z 2- (r,s)+max <;<a(Risi) Z Z 2~ (s,) <2 aJ

SEQ, J=1 (s,00)>dJ

where ﬁ/::(ﬁ’i,...,ﬂi,), oe/—(oc/l,...,oci,), oc;::ﬁ]’::ocj, oc/l::ai+uRi, ﬁﬁ
oci+Ri, l#]
Lemma 7 is proved. 0O

Lemma 8. (see Pinkus [3]). Let X, be a subspace of a normed linear space
X whose dimension n is greater than M, and let BX, denote the closed unit ball of
X,,. Then

dy(BX,, X) = 1.
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3. Proof of Theorems 1 and 2

First, by (2.1) we know that
dy (BW! W;‘)

r R mix,p? r R
At (B Wi Hy') < dy(BHY , HY) (Bt W) G
dy(BWR,WE, )
D BW ) ™) < B Wi ) (:2)

mix,p

So it suffices to prove the upper estimate for dy;(BH W), du(BHY, W, ) and

m1xp7 mix,p
the lower estimate for dy (BWp,, , H)Y), dy(BW, Hly ).
Upper estimates. By Lemma 7 we see that
7 R I —aJ
dy (BH iy W, )<feilg3 L = VS llwn <27 (3-3)

mix,p

where J = J(M) satisfies J = sup{keZ [dimT(¥}), <M}, 0<u<1. So from (2.15)
we can infer that 2/ =< M. Hence

dy (BHpy, o, W) < M7 (3.4)
Similarly we can get
dy (BHY, Wy, ) < M—179R), (3.5)
Lower estimates. Let J satisfy 2/l M <2/, 5=
([Jg(R)/Ry], ..., [Jg(R)/R4]). Denote

T(3), =< feLlf(x)= > Ak)e™ =5 f(x)

kep(s)

For all fe T(E)p7 by the Bernstein inequality and Lemma 4, we have

1l <2211 <2050 7 ()
So we obtain that ¢.2-("IRV. BHI AT(5),c BWY, where ¢ is a positive

constant. Hence by Lemma 8 we obtain that

dy(BWR, HYy )27 79 ® g, (BH

o AT(S),, Hyy,) > 270 (3.7)

mix,p mlxp

Now let r—R>0. For simplicity we suppose that &= minj¢;<q(r; — R;) =
— Ry. Let J satisfy 2/2<M <2/~ J=(J,0, ...,0). Denote

T@), = {feLl/(x)= Y Mk =5:/(x)}.

kep(s)

For all f'e T(s”)p, similar to the proof of (3.6), we can get that
11wy, <22 1l (3:8)
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So by Lemma 8 we obtain that
dr(BWphis p HY)> 27 dy (BHY N T(3),, HY ) > 27 (3.9)

mix, p?

The proof of Theorems 1 and 2 is complete.
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